
13.1 Introduction
User accounts are designed to provide security on a Linux operating system. Each person on the

system must log in using a user account and the user account will either allow the person to access

a specific file/directory or disallow such access. This is accomplished by file permissions, a topic

discussed in a later chapter.

User accounts also belong to groups which can also be used to provide access to files/directories.

Each user belongs to at least one group (often many) to allow users to more easily share data that is

stored in files with other users.

User and group account data is stored in database files. Knowing the content of these files is

important, since it will allow you to better understand which users have access to files and

directories on the system. These database files also contain vital security information that may affect

the ability of a user to access the system (login).

There are several commands that will provide you with the ability to see user and group account

information, as well as allow you to switch from one user account to another (provided you have the

appropriate authority to do so). These commands are valuable for investigating usage of the system,

troubleshooting system problems and for monitoring unauthorized access to the system.

13.2 Linux Essentials Exam Objectives
This chapter will cover the topics for the following Linux Essentials exam objectives:

Topic 5: Security and File Permissions (weight: 7)

 5.1: Basic Security and Identifying User Types

 Weight: 2

 Description: Various types of users on a Linux system.

 Key Knowledge Areas:

 Root and Standard Users

 System Users

 The following is a partial list of the used files, terms, and utilities:

 /etc/passwd, /etc/group

 id, who, w

 sudo

 Things that are nice to know:

 su

13.3 User Accounts

There are several text files in the /etc directory that contain the account data of the users and

groups that are defined on the system. For example, if you wanted to see if a specific user account

has been defined on the system, then the place to check is the /etc/passwd file.

The /etc/passwd file defines some of the account information for user accounts. Oddly enough, the

passwords for the accounts are not stored in the /etc/passwd file, as the file name implies, but

rather the /etc/shadow file.

13.3.1 /etc/passwd File
Each line of the /etc/passwd file relates to a user account. The following graphic shows the first

ten lines of a typical /etc/passwd file:

Each line is separated into fields by colon characters. The fields from left to right are as follows:

name:password placeholder:user id:primary group id:comment:home directory:shell

The following table describes each of these fields in detail, using the first line of the output of the

previous graphic (root:x:0:0:root:/root:/bin/bash):

Field Example Description

name root This is the name of the account. This name is used by the person

when they log in to the system and when file ownership is provided

with the ls -l command. Typically, the system uses the user ID

(see below) internally and the account name is provided to make it

easiest for regular users to refer to the account.

Field Example Description

The root account is normally a special administrative account.

However, it is important to note that not all systems have a root

account and that it is really the user id of 0 (zero) that provides

administrative privileges on the system.

password

placeholder

x At one time, the password for the user was actually stored in this

location, but now it is stored in the /etc/shadow file. The x in the

password placeholder field indicates to the system that the password is

not stored here, but rather in the /etc/shadow file.

user id 0 Each account is assigned a user ID (UID). The UID is what really

defines the account as the user name is normally not directly used

by the system. For example, files are owned by UIDs, not by user

names.

Some UIDs are special. For example, the UID of 0 provides that

user account with administrative privileges.

UIDs below 500 (on some Linux distributions 1,000) are reserved

for system accounts. System accounts will be covered in more

detail later in this chapter.

primary

group id

0 Each file and directory is owned by a user account. Normally the

person who creates the account owns the file. In addition, each file

is owned by a group, normally the user's primary group.

Groups are assigned numeric IDs just like users are.

When a user creates a file, the file is owned by the user's UID and

also owned by a group id (GID), the user's primary GID. This field

defines which GID is the user's primary GID.

Besides, providing default group ownership on a file, this field also

indicates that the user is a member of the group, which means the

user will have special permissions on any file that is owned by this

group. Permissions will be covered in detail in a later chapter.

comment root This field can contain any information about the user, including

their real (full) name and other useful information.

This field is also called the GECOS (General Electric

Comprehensive Operating System) field. GECOS is a rarely used

predefined format for this field that defines a comma-separated list

Field Example Description

of items, including the user's full name, office location, phone

number and additional information.

An administrator can modify GECOS information with the chfn

command and users can display this information with the finger

command.

home

directory

/root This field defines the location of the user's home directory. For

regular users, this would normally be /home/username where

username is replaced with the user's username. For example, a

username of bob would have a home directory of /home/bob.

The root user normally has a different place for the home directory:

/root.

System accounts rarely have home directories as they typically are

not used to create or store files.

shell /bin/bash This is the location of the user's login shell. By default, the user is

"placed in" this shell whenever the user logs into a command line

environment or opens a terminal window. The user could then

switch to a different shell by typing the name of the shell, for

example: /bin/tcsh.

The bash shell (/bin/bash) is the most common shell for Linux

users.

Note that while this chapter describes the contents of the user and group files, the next chapter will

describe the commands and tools used to modify user and group account information.

13.3.2 /etc/shadow File
As previously mentioned, the /etc/shadow file contains account information related to the user's

password. A typical /etc/shadow file would look like the following graphic:

The fields of the /etc/shadow file are:

name:password:last change:min:max:warn:inactive:expire:reserved

The following table describes the fields of the /etc/shadow file in more detail, using the following

account that describes a typical user account:

sysadmin:6lS6WJ9O/fNmEzrIi$kO9NKRBjLJJTlZD.L1Dc2xwcuUYaYwCTS.gt4elijSQW8ZDp6GLYAx.T
RNNpUdAgUXUrzDuAPsYs5YHZNAorI1:15020:5:30:7:60:15050:

Field Example Description

name sysadmin This is the name of the account, which matches the account name in

the /etc/passwd file.

password 6.........rI1 The password field contains the encrypted password for the account.

This very long string (which was truncated in the example to the left

of this cell) is a one-way encryption, meaning that it can't be

"reversed" to determine the original password.

While regular users have encrypted passwords in this field, system

accounts will have an * character in this field. See more details about

system accounts later in this chapter.

last

change

15020 This field contains a number that represents the last time the

password was changed. The number 15020 is the number of days

since January 1, 1970 (called the Epoch) and the last day the account

Field Example Description

password was changed.

This value is automatically generated when the user's password is

modified. This value is important as it is used by the password aging

features provided by the rest of the fields of this file.

min 5 This is one of the password aging fields; a non-zero value in this

field indicates that after a user changes their password, the password

can't be changed again for the specified number of days (5 days in

this example). This field is important when the max field is used

(see below).

A value of zero in this field means the user can always change their

password.

max 5 This field is used to force users to change their passwords on a

regular basis. A value of 30 in this field means the user must change

their password at least every 30 days to avoid having their account

"locked out".

Note that if the min field is set to 0, the user may be able to

immediately set their password back to the original value, defeating

the purpose of forcing the user to change their password every 30

days. So, if the max field is set, the min field is normally set as well.

For example, a min:max of 5:60 means the user must change their

password every 60 days and, after changing, the user must wait 5

days before they can change their password again.

If the max field is set to 99999, the maximum possible value, then

the user essentially never has to change their password (because

99999 days is approximately 274 years).

warn 7 If the max field is set, the warn field indicates that the user would

be "warned" when the max timeframe is approaching. For example,

if warn is set to 7, then any time during the 7 days before the max

timeframe is reached, the user would be warned to change their

password during the login processes.

The user is only warned at login, so some administrators have taken

the approach to set the warn field to a higher value to provide a

greater chance of having a warning issued.

If the max timeframe is set to 99999, then the warn field is

Field Example Description

essentially useless

inactive 60 If the user ignores the warnings and they exceed the max password

timeframe, their account will be locked out. In that case, the inactive

field provides the user with a "grace" period in which their password

can be changed, but only during the login process.

If the inactive field is set to 60, the user has 60 grace days to change

to a new password. If they fail to do so, then the administrator would

be needed to reset the password for the user.

expire 15050 This field represents the number of days from January 1, 1970 and

the day the account will "expire". An expired account will be locked,

not deleted, meaning the administrator can reset the password to

unlock the account.

Accounts with expiration dates are normally provided to temporary

employees or contractors. The account will automatically expire

after the user's last day of work.

When an administrator sets this field, a tool is used to convert from a

real date to an "Epoch" date. There are also several free converters

available on the Internet.

reserved Currently not used, this field is reserved for future use.

Regular users can't view the contents of the /etc/shadow file for security reasons. In order to view

the contents of this file, you must log in as the administrator (the root account).

13.3.3 Viewing Account Information
A good way to view account information from the /etc/passwd file is to use the grep command to

output just the line containing the account that you are interested in. For example, to see the account

information for the user name named "sysadmin", use the grep sysadmin

/etc/passwd command:

Another technique for retrieving user information that is normally contained in

the /etc/passwdand /etc/shadow files is to use the getent command. One advantage to using

the getent command is that it can retrieve account information that is defined locally

(/etc/passwd and/etc/shadow) or on a network directory server.

The general syntax of a getent command is: getent database record. For example, the

getent passwd sysadmin command would retrieve the passwd account information for the

sysadmin user:

13.3.4 Viewing Login Information
When you log into different user accounts, it can be confusing as to who you are currently logged in

as. To verify your identity (view whose account you are currently using) you can execute the id

command.

The id command will report the current identity, both by user name and user ID. In addition to

providing the user account information, the group membership is also displayed. With no argument,

the id command will display your identity. Given a user name as an argument, such as id root,

the command will display other account information:

The output includes Security Enhanced Linux context (the content= part of the output), a topic which

is beyond the scope of this course.

13.3.5 System Accounts
Users will log into the system using regular user accounts. Typically, these accounts have UID

values of greater than 500 (on some systems 1,000).

The root user has special access to the system. As previously mentioned, this special access is

actually provided to the account with a UID of 0.

There are additional accounts that are not designed for users to log into. These accounts, typically

from UID 1 to UID 499, are called system accounts and they are designed to provide accounts for

services that are running on the system.

System accounts have some fields in the /etc/passwd and /etc/shadow files that are different

than other accounts. For example, in the /etc/passwd file, system accounts will have a non-login

program in the "login shell" field:

bin:x:1:1:bin:/bin:/sbin:/sbin/nologin

In the /etc/shadow file, system accounts will typically have an * character in place of the password

field:

bin:*:15513:0:99999:7:::

There are a few important things that you should remember about system accounts:

 Most are necessary for the system to function correctly.

 You should not delete a system account unless you are absolutely certain that removing the

account won't cause problems.

 As you gain more experience, you should learn what each system account does. System

administrators are tasked with ensuring the security on the system and that includes properly

securing the system accounts.

13.4 Group Accounts
Your level of access to a system is not determined solely by your user account. Each user can be a

member of one or more groups, which can also affect your level of access to the system.

Traditionally, UNIX systems limited users to belonging to no more than a total of sixteen groups, but

the recent Linux kernels support users with over sixty-five thousand group memberships.

As you have already seen, the /etc/passwd file defines the primary group membership for a user.

Supplemental group memberships (or secondary group memberships), as well as the groups

themselves, are defined in the /etc/group file.

To view information about a specific group, either the grep or getent commands can be used. For

example, the following commands will display the "mail" group account information:

[sysadmin@localhost ~]$ grep mail /etc/group

mail:x:12:mail,postfix

[sysadmin@localhost ~]$ getent group mail

mail:x:12:mail,postfix

13.4.1 /etc/group File
The /etc/group file is a colon delimited file with the following fields:

group_name:password_placeholder:GID:user_list

The following table describes the fields of the /etc/group file in more detail, using a line that

describes a typical group account:

mail:x:12:mail,postfix

Field Example Description

group_name mail This field contains the group name. As with user names,

group names are easier for people to remember. The system

typically uses Group IDs (GIDs) rather than group names.

password_placeholder x While there are passwords for groups, they are rarely used in

Linux. In the event that the administrator makes a group

password, it would be stored in a different file

(/etc/gshadow) because the group password is no longer

stored in the /etc/group file. The "x" in this field is used to

indicate that the password is not stored in this file. Group

passwords are beyond the scope of this course.

Field Example Description

GID 12 Each group is associated with a unique Group ID (GID) which

is placed in this field.

user_list mail,postfix This last field is used to indicate who is a member of the

group. While primary group membership is defined in

the/etc/passwd file, users who are assigned to

additional groups would have their user name placed in

this field of the /etc/group file.

In this case, the mail and postfix users are secondary

members of the mail group.

It is very common for a user name to also appear as a

group name. It is also common for a user to belong to a

group with the same name.

13.4.2 Changing Groups
Groups are primarily used for controlling access to files. By default, any new file that a user creates

will be owned by the user's primary group.

A user can create a file that is owned by one of their secondary groups by using the newgrp

group_name command. This command temporarily changes the user's primary group to a different

group by opening a new shell with a different primary group. The id command can be used to verify

that the user's primary group is different:

After using the shell started by the newgrp command to create the necessary files, return to your

original shell by using the exit command.

Important: To use the newgrp command, a user must be a part of the group that they are switching

to. Also, on some systems, the newgrp command is disabled for regular user use due to group

passwords.

13.4.3 Changing the Group Ownership of an

Existing File
To change the group owner of an existing file the chgrp group_name file command can be

used. Users can only change the ownership of files that they own. The new group owner of the file

must also be a group that the user is a member of:

To change the group ownership of all of the files of a directory structure, use the -R option to the

chgrp command. For example, the chgrp -R games test_dir command would change the

group ownership of the test_dir directory and all files and sub directories of the test_dir directory.

There is also a chown command that can be used to change the user owner of a file or directory.

However, this command can only be used by the root user. Regular users can't "give" their files to

another user.

13.5 Logging In As Root
There are many different ways to execute a command that requires administrative or root privileges.

As already mentioned, logging in to the system as the root user allows you to execute commands as

the administrator. This is potentially dangerous because you may forget that you are logged in as

root and might run a command that could cause problems on the system. As a result, it is not

recommended to login as the root user directly.

Because using the root account is potentially dangerous, you should only execute commands as

root if administrative privileges are needed. If the root account is disabled, as it is on the Ubuntu

distribution, then administrative commands can be executed using the sudo command. If the root

account is enabled, then a regular user can execute the su command to switch accounts to the root

account.

When you login to the system directly as root to execute commands, then everything about your

session runs as the root user. If using the graphical environment, this is especially dangerous as the

graphical login process is comprised of many different executables (programs that run during login) .

Each program that runs as the root user represents a greater threat than a process run as a

standard user, as those programs would be allowed to do nearly anything, whereas standard user

programs are very restricted in what they can do.

The other potential danger with logging into the system as root is that a person that does this may

forget to log out to do their non-administrative work. This means that programs such as browsers,

email clients, etc. would be run as the root user without restrictions on what they could do. The fact

that several distributions of Linux, notably Ubuntu, do not allow users to login as the root user should

be enough implication that this is not the preferred way to perform administrative tasks.

13.6 Using the su Command
The su command allows you to run a shell as a different user. By default, if a user account is not

specified, the su command will open a new shell as the root user. While switching to the root user is

what the su command is used for most frequently, it can also switch to other users as well.

One common option that is used with the su command is the -l option, which results in the new

shell being a login shell. Using the su command with a login shell option is often important to

ensuring that any commands executed will run correctly, as the login shell fully configures the new

shell with the settings of the new user. A non-login shell essentially just changes the UID, but doesn't

fully log the user in. The -l option can be abbreviated as simply - or spelled out as --login.

Since the root account is used by default with the su command, the following two commands are

equivalent ways to start a shell as the root user:

su - root

su -

After pressing Enter to execute either one of these commands, the user must provide the password

of the root user to start the shell as the root user. If you don't know the password of the account that

you are shifting to, then the su command will fail.

After using the shell started by the su command to perform the necessary administrative tasks,

return to your original shell (and original user account) by using the exit command.

13.7 Using the sudo Command
In distributions that do not allow the root user to login directly or via the su command, the installation

process automatically configures one user account to be able to use the sudo command to execute

commands as if they were executed by the root user.

Like the su command, the sudo command assumes by default the root user account should be used

to execute commands; to specify a different user account use the -u option.

When using the sudo command to execute a command as the root user, the command will prompt

for the user's own password (not that of the root user). This is a security feature that would prevent

unauthorized root access if the user were to leave their computer unattended. The prompt for the

password will not appear again as long as the user continues to execute sudo commands less than

five minutes apart.

Using the sudo command to execute an administrative command will result in an entry placed in a

log file. This entry will include the user name who executed the command, the command that was

executed and the date and time when the comment was executed. This allows for increased

accountability, compared to a system where many users might know the root password and can

either login directly as root or use the su command to execute commands as the root user.

You can use the sudo command to execute a command that requires root privileges. For example,

you need to be the root user in order to view the /etc/shadow file. The sudo head

/etc/shadow command would run the head command as the root user:

One big advantage to using sudo to execute administrative commands is that it reduces the risk that

a user accidently executes a command as root. The intention to execute a command is clear; the

command is executed as root if prefixed with the sudo command. Otherwise, the command is

executed as a regular user.

13.7.1 Setting Up the sudo Command
If the sudo command is not automatically configured during installation, it can be configured to work

manually post-install. Initially, this would require logging in as the root user (or using the su

command to switch to the root account), but after it has been configured, specified users will be able

to run sudo commands. You set up access to the sudo command by running the visudo

command.

The visudo command will place you in an editor program, by default the vi (or vim) editor on most

systems, which can be challenging for novice Linux users to use. To configure another editor, export

the EDITOR variable with the value of the editor you would prefer. For example, to use the

gedit editor instead of vi/vim, you would execute the export EDITOR=gedit command before

you would execute the visudo command.

Using the visudo command will open the /etc/sudoers configuration file for editing. Although

advanced configurations of the sudo command are possible through this file, they are beyond the

scope of this course. Basically, entries are made into this file to specify which user(s) on which

machines can use the sudo command to execute commands as other users.

This default entry...

root ALL=(ALL) ALL

...could be read as, "the root user can on ALL machines act as ALL users to execute ALL

commands." To allow a user such as "sysadmin" to execute all commands as all users using the

sudo command, an entry like the following could be added:

sysadmin ALL=(ALL) ALL

13.8 Using the who Command
The who command displays a list of users who are currently logged into the system, where they are

logged in from and when they logged in. Through the use of options, this command is also able to

display information such as the current run level (a functional state of the computer) and the time

that the system was booted.

For example:

[sysadmin@localhost ~]$ who

root tty2 2013-10-11 10:00

sysadmin tty1 2013-10-11 09:58 (:0)

sysadmin pts/0 2013-10-11 09:59 (:0.0)

sysadmin pts/1 2013-10-11 10:00 (example.com)

The following table describes the output of the who command:

Column Example Description

Username root This column indicates the name of the user who is logged in. Note

that by "logged in" we mean "any login process and any open

terminal window".

terminal tty2 This column indicates which terminal window the user is

working in.

If the terminal name starts with "tty", then this is an indication

of a local login, as this is a regular command line terminal.

If the terminal name starts with "pts", then this indicates the

user is using a pseudo terminal or running a process that acts

like a terminal. This can mean the user has a terminal

Column Example Description

application running in X Windows, such as gnome-

terminal or xterm or they may have used a network protocol

to connect to the system, such as ssh or telnet.

date 2013-10-11

10:00

(example.com)

This indicates when the user logged in.

After the date and time the user logged into the system, some

location information may appear.

If the location information contains a host name, domain name

or IP address, then the user has logged in remotely.

If there is a colon and a number, then this indicates that they

have performed a local graphical login.

If no location information is shown in the last column, then this

means the user logged in via a local command line process.

If you want to display system status information, the who command can do that by using several

options. For example, the -b option will show the last time the system started (was booted) and

the -r option will show the time the system reached a certain run-level:

[sysadmin@localhost ~]$ who -b -r

 system boot 2013-10-11 09:54

 run-level 5 2013-10-11 09:54

13.9 Using the w Command
The w command provides a more detailed list about the users currently on the system than the who

command. It also provides a summary of the system status. For example:

[sysadmin@localhost ~]$ w

 10:44:03 up 50 min, 4 users, load average: 0.78, 0.44, 0.19

USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT

root tty2 - 10:00 43:44 0.01s 0.01s -bash

sysadmin tty1 :0 09:58 50:02 5.68s 0.16s pam: gdm-p
assword

sysadmin pts/0 :0.0 09:59 0.00s 0.14s 0.13s ssh 192.168.1.2

sysadmin pts/1 example.com 10:00 0.00s 0.03s 0.01s w

The first line of output from the w command is identical to that of the uptime command. It shows the

current time, how long the system has been running, the total number of current logins (users) and

the load on the system averaged over the last 1, 5 and 15 minute time periods. Load average is

CPU utilization where a value of 100 would mean full CPU usage during that period of time.

The following table describes the rest of the output of the w command:

Column Example Description

USER root This column indicates the name of the user who is logged in.

TTY tty2 This column indicates which terminal window the user is working in.

FROM example.com Where the user logged in from.

LOGIN@ 10:00 When the user logged in.

IDLE 43:44 How long the user has been idle since the last command they ran.

JCPU 0.01s The total cpu time (s=seconds) used by all processes (programs) run since

login.

PCPU 0.01s The total cpu time for the current process.

WHAT -bash The current process that the user is running.

